Estimation of interfacial interaction of poly(vinylidene fluoride-*co*-hexafluoro acetone) by contact angle

Yoshihisa Kano*

Research Laboratory, LINTEC Corporation, 5-14-42, Nishiki-cho, Warabi-shi, Saitama 335, Japan

and Saburo Akiyama

Laboratory of Chemistry, Faculty of General Education, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183, Japan (Received 15 July 1992; revised 12 August 1992)

Using contact angle data for poly(vinylidene fluoride-co-hexafluoro acetone) with various organic liquids, such as dispersion, polar and hydrogen-bonding liquids, the Good-Girifalco interaction parameter, Φ_G , work of adhesion, W_a , and interfacial tension, γ_{SL} , were calculated. The values of Φ_G , W_a and γ_{SL} were dependent on the surface tension γ_L and the species of liquid.

(Keywords: poly(vinylidene fluoride-co-hexafluoro acetone); contact angle; work of adhesion; interfacial tension)

Introduction

It is well known that the surface tension of polymer solids may be estimated by contact angle using organic liquids¹⁻⁶. In our previous paper⁷, the contact angles of dispersion (D), polar (P) and hydrogen-bonding (H) liquids with poly(vinylidene fluoride-*co*-hexafluoro acetone) [P(VDF-HFA)] were measured. The critical surface tension, $\gamma_{\rm C}$, of P(VDF-HFA) estimated with P liquids was larger than that with D and H liquids. It was suggested that the orientation and rearrangement of P(VDF-HFA) occurred and the plot of $\cos \theta$ and $\gamma_{\rm L}$ resulted in essentially a concave curve. The surface tensions of P(VDF-HFA), $\gamma_{\rm S}$, were obtained using the log(1 + $\cos \theta$) versus log($\gamma_{\rm L}$) plot. On the other hand, Good and Girifalco^{3,4} defined the next equation using parameter $\Phi_{\rm G}$:

$$W_a = 2\Phi_G(\gamma_S \gamma_L)^{0.5} \tag{1}$$

where W_a is the work of adhesion and is calculated with Young–Dupré's equation:

$$W_{\rm a} = \gamma_{\rm L} (1 + \cos \theta) \tag{2}$$

The interfacial tension, γ_{SL} , is obtained by means of Dupré's equation as follows:

$$V_{a} = \gamma_{S} + \gamma_{L} - \gamma_{SL} \tag{3}$$

 W_a and γ_{SL} are very important parameters for wettability and adhesion⁸. In this study, from contact angle data of organic liquids on P(VDF-HFA) as in the previous study⁷, the values of Φ_G , W_a and γ_{SL} were examined. The polymer samples were P(VDF-HFA) with HFA contents of 6.5 ($M_n = 30\,000$, $M_w/M_n = 4.23$), 8.3 ($M_n = 11\,600$, $M_w/M_n = 4.94$) and 10.4 mol% ($M_n = 35\,000$, $M_w/M_n = 4.63$). The surface tensions, γ_L , and the dispersion component, X_L^d , of the organic liquids, D, P and H, are shown in *Table 1*.

Discussion

Good and Girifalco^{3,4} expressed Φ_G by means of the polarizability, α , ionization potential, *I*, permanent dipole moment, μ , Boltzmann constant, κ , and temperature, *T*, in the following equation:

$$\Phi_{\rm G} = \frac{\frac{3}{4}\alpha_1\alpha_2 \frac{2I_1I_2}{I_1 + I_2} + \frac{\alpha_1\mu_2^2 + \alpha_2\mu_1^2}{2} + \frac{\mu_1^2\mu_2^2}{3\kappa T}}{\left(\frac{3}{4}\alpha_1^2I_1 + \alpha_1\mu_1^2 + \frac{\mu_1^4}{3\kappa T}\right)^{0.5} \left(\frac{3}{4}\alpha_2^2I_2 + \alpha_2\mu_2^2 + \frac{\mu_2^4}{3\kappa T}\right)^{0.5}}$$
(4)

where subscripts 1 and 2 refer to phases 1 and 2, respectively. The estimation of Φ_G using equation (4) is

Table 1 Surface tension of liquids at 20° C (dyn cm⁻¹)^a

Species	Liquid	γ^d_L	۶Ľ	γ^{h}_{L}	γL	X^{d}_{L}
D	n-Octane	21.8	0	0	21.8	1.00
	n-Nonane	22.9	0	0	22.9	1.00
	n-Decane	23.9	0	0	23.9	1.00
	n-Undecane	24.7	0	0	24.7	1.00
	n-Dodecane	25.4	0	0	25.4	1.00
	n-Tetradecane	26.7	0	0	26.7	1.00
	n-Hexadecane	27.6	0	0	27.6	1.00
Р	1,1,2-Trichloroethane		_	_	33.6	-
	Hexachlorobutadiene	35.8	0.2	0	36.0	0.994
	Tetrachloroethane	33.2	3.1	0	36.3	0.915
	1,2-Dibromoethane	~		-	38.9	_
	α-Bromonaphthalene	44.4	0.2	0	44.6	0.996
	Tetrabromoethane	44.3	3.2	0	47.5	0.933
н	1-Methoxy-2-propanol	~	-		27.1	_
	Dipropyleneglycol	29.4	0	4.5	33.9	0.867
	1,3-Butanediol		-		37.8	_
	Polyethyleneglycol	29.9	0.1	13.5	43.5	0.687
	Diethyleneglycol	31.7	0	12.7	44.4	0.714
	Ethyleneglycol	30.1	0	17.6	47.7	0.631
	Thiodiglycol	39.2	1.4	13.4	54.0	0.726

^a Data from ref. 7

^{*} To whom correspondence should be addressed

very hard because of various parameters. Saito⁹⁻¹² presented two different approaches for estimating Φ_G : from equation (5) with parameter ϕ , and from equation (6) using parameter *a* as follows:

$$\Phi_{\rm G} = [(2 - \phi)\gamma_{\rm C}^{0.5} + \phi\gamma_{\rm L}^{0.5}]/(2\gamma_{\rm S}^{0.5})$$
(5)

$$\Phi_{\rm G} = \left[(X_{\rm L}^{\rm d} X_{\rm S}^{\rm d})^{0.5} + (X_{\rm L}^{\rm p} X_{\rm S}^{\rm p})^{0.5} \right] (\gamma_{\rm L} / \gamma_{\rm S})^a \tag{6}$$

where ϕ and 0.5-a are the intercept of $1+\cos\theta$ at $\gamma_L^{-0.5} = 0$ in the $(1 + \cos \theta)$ versus $1/\gamma_L^{0.5}$ plot and the slope between $\log(1 + \cos \theta)$ and $\log(\gamma_L)$, respectively. X_j^d and X_{j}^{p} are the dispersion and polarity, respectively, of surface tension of component j. The relationship between Φ_{G} of P(VDF-HFA) with 10.4 mol% HFA content and γ_L is shown in *Figure 1*. There are few differences between Φ_{G} obtained with equation (5) and that with equation (6). However, both Φ_G values have similar tendencies in homogeneous liquids. As shown in Figure 1, Φ_G decreases with increasing γ_L in D, P and H liquids. In our previous study¹³, from the contact angle of various organic liquids on poly(vinyl ethylene-co-1,4-butadiene) (V-BR)/terpene resin blends, Φ_{G} decreased with increasing γ_{L} in D and H liquids while in P liquids it increased with increasing $\gamma_{\rm L}$. Both V–BR and terpene resin consist of carbon and hydrogen, whereas P(VDF-HFA) includes polar sites such as C-F. Φ_G depends on α , I and μ from equation (4). Consequently, we think that the difference in interaction between V-BR/terpene resin blends and P(VDF-HFA) and organic liquids is due to the polar parameters (α , I, μ).

We can estimate the work of adhesion W_a from Φ_G using equation (1). On the other hand, W_a is directly evaluated with the Young-Dupré equation (2) using the contact angle of liquid on a solid. We can compare W_a calculated from equation (1) and that from equation (2) using the experimental data shown in *Figure 2*. The W_a versus γ_L plot is similar using three different estimations. The relationship between W_a and γ_L varies with the species

Figure 1 Relationship between Φ_G and γ_L of P(VDF-HFA) with 10.4 mol% HFA content. \bigoplus , H liquids; \bigvee , D liquids; \bigsqcup , P liquids (a) $\Phi_G = [(2-\phi)\gamma_C^{0.5} + \phi\gamma_L^{0.5}]/(2\gamma_S^{0.5})$ (b) $\Phi_G = [(X_L^{0}X_S^{0.5} + (X_L^{0}X_S^{0.5})](\gamma_L/\gamma_S)^a$

Figure 2 Relationship between W_a and γ_L of P(VDF-HFA) with 10.4 mol% HFA content. Symbols as in Figure 1

(a) $W_{a} = 2\Phi_{G}(\gamma_{S}\gamma_{L})^{0.5}$ $\Phi_{G} = [(2 - \phi)\gamma_{C}^{0.5} + \phi\gamma_{L}^{0.5}]/(2\gamma_{S}^{0.5})$ (b) $W_{a} = 2\Phi_{G}(\gamma_{S}\gamma_{L})^{0.5}$ $\Phi_{G} = [(X_{L}^{d}X_{S}^{d})^{0.5} + (X_{L}^{p}X_{S}^{p})^{0.5}] (\gamma_{L}/\gamma_{S})^{a}$ (c) $W_{a} = \gamma_{L}(1 + \cos\theta)$

of liquid. In D and H liquids, W_a increases with increasing γ_L , whereas in P liquids, it does not change with increasing γ_L . The increase in W_a with increasing γ_L using D liquids is smaller than that using H liquids. It is thought that W_a is influenced by the polar parameters (α , I, μ) of P(VDF-HFA) and each organic liquid. The W_a values calculated with Φ_G are consistent with those calculated using equation (2). Thus, it is clear that the two estimations of Φ_G in this study are available for estimating W_a .

The interfacial tension between solid and liquid, γ_{SL} , is expressed with equation (3) in terms of W_a . Figure 3 shows the γ_{SL} versus γ_L plots for P(VDF–HFA) with 10.4 mol% HFA content. γ_{SL} increases monotonically with increasing γ_L . Gray¹⁴ and Saito¹⁰ pointed out that the relationship between γ_{SL} and γ_L exhibits a concave curve and the minimum in γ_{SL} shows a negative value. If we can find liquids having $\gamma_L < 25$ dyn cm⁻¹ and which display positive contact angles on the surface of P(VDF–HFA), a negative value of γ_{SL} can be calculated

Figure 3 Relationship between γ_{SL} and γ_L of P(VDF-HFA) with 10.4 mol% HFA content. Symbols as in Figure 1

$$\begin{split} &\gamma_{\rm SL} = \gamma_{\rm S} + \gamma_{\rm L} - W_{\rm a} \\ &W_{\rm a} = 2 \Phi_{\rm G} (\gamma_{\rm S} \gamma_{\rm L})^{0.5} \\ &\Phi_{\rm G} = [(2 - \phi)\gamma_{\rm C}^{0.5} + \phi\gamma_{\rm L}^{0.5}]/(2\gamma_{\rm S}^{0.5}) \\ &\gamma_{\rm SL} = \gamma_{\rm S} + \gamma_{\rm L} - W_{\rm a} \\ &W_{\rm a} = 2 \Phi_{\rm G} (\gamma_{\rm S} \gamma_{\rm L})^{0.5} \\ &\Phi_{\rm G} = [(X_{\rm L}^{\rm d} X_{\rm S}^{\rm S})^{0.5} + (X_{\rm L}^{\rm p} X_{\rm S}^{\rm S})^{0.5}] (\gamma_{\rm L}/\gamma_{\rm S})^{\rm a} \end{split}$$
(b)

Estimation of interfacial interaction: Y. Kano and S. Akiyama

with equation (3). From Φ_G , W_a and γ_{SL} versus γ_L plots, we expect the parameters ϕ and a can be made available to estimate the interaction between the liquid and solid, such as P(VDF–HFA). The $\Phi_{\rm G}$, $W_{\rm a}$ and $\gamma_{\rm SL}$ versus $\gamma_{\rm L}$ plots of other P(VDF-HFA) copolymers were similar to that of P(VDF-HFA) with 10.4 mol% HFA content.

Conclusion

The interfacial interaction between P(VDF-HFA) and organic liquids, such as dispersion, polar and hydrogenbonding liquids, was evaluated using contact angle data. The Good–Girifalco interaction parameter, Φ_{G} , work of adhesion, W_a , and interfacial tension, γ_{SL} , were calculated. The $\Phi_{\rm G}$, $W_{\rm a}$ and $\gamma_{\rm SL}$ values were dependent on surface tension, γ_L , and species of liquid. Finally, we found the parameters ϕ and a were available for estimating $\Phi_{\rm G}$, $W_{\rm a}$ and γ_{SL} .

References

- 1 Fox, H. W. and Zisman, W. A. J. Colloid Sci. 1950, 5, 514
- Fox, H. W. and Zisman, W. A. J. Colloid Sci. 1952, 7, 109, 428 2
- Girifalco, L. A. and Good, R. J. J. Phys. Chem. 1957, 61, 904 3
- 4 Good, R. J. and Girifalco, L. A. J. Phys. Chem. 1960, 64, 541
- 5 Good, R. J. 'Contact Angle, Wettability and Adhesion', American
- Chemical Society, Washington, DC, 1964, p. 99
- Hata, T., Kitazaki, Y. and Saito, T. J. Adhesion 1987, 24, 177 Kano, Y. and Akiyama, S. Polymer 1992, 33, 1690 6
- 7
- 8 Imoto, M. 'Hyomen Choryoku no Rikainotameni', Kobunshi Kankokai, Kyoto, 1992, p. 163
- 9 Saito, T. Nippon Setchaku Kyokaishi 1988, 24, 347
- 10 Saito, T. Nippon Setchaku Kyokaishi 1988, 24, 431
- 11 Saito, T. and Kano, Y. Nippon Setchaku Kyokaishi 1988, 24, 469
- Kano, Y. and Saito, T. Setchaku 1988, 32, 396 12
- 13 Kawahara, S., Kano, Y. and Akiyama, S. Polym. J. 1992, 24, 145
- 14 Gray, V. R. New Sci. 1963, 18, 143